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EVALUATION

This report describes further results of an approach to texture

discrimination based on spatial gray-level co-occurrences and maximum

likelihood classification. Previous results demonstrated the capability

of the log-likelihood texture discriminator to distinguish between

random texture areas where other existing schemes could not. This

procedure had the requirement that the model parameters for each of the

texture classes be known a priori and were ',hstituted into the discrim-

*- 1T ination process. A method has been developed for estimating the unknown

parameters of the texture models through the incorporation of selecting

representative training sets. This effort has created a technique

that indicates an effective miethod for performing texture discrimination

on real-world imagery. This work has provided a promising contribution

to accomplishing the goals of technical planning objective R2B2A,

Digital Image Exploitation.
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:ntroduction

made use of measurements of the spatial gray-.-e,el co-occurrernce ratrix

.escrfbed by Haralick and his co-workers E21. The method was shcw. to '-e

at a:ooroximatiJon t o th~e statistica_y o =tiz 4 z ,c like-hocd lsiir

*~n m ade use -:f explicit zs.ochasti'c textu,,re modeling asuoin. The con-

-n zrcer-_ies :o' sevveral_ -tcasi extur-e =odelS we;re iesr:eo

* ~~and a 2-: - f---.erinz =ioementationr of t.he resultifng o-iklh

te:t- e = c eao waS -7:rvioed. Th.e effic-a': of the aoraowas

t-ern eorsrtotruheorealeulsoaied wit-h dmae

-~.houEh t.he res-at-s presen-tea in -.Were roo-!SioX, 7the ValueE

* ~~the =cde. naram.ters fcr eacoi of -.-e texture C7.asses knon o 'le t o w:

as sued kznown a trori and were sbstitut7-ed i4.t c the I oE-like I i ccSnri.

data,- -t s cle-ar th -he model- -zar -- e-ers rr each t.exture class :-ncwn-

obe actin~z must_ be estimat ed b-y fit-ting an aor otriate stocastic tx-

-turze =ctel t.c known sanrol--es f:-om' each -ex-.,i-e c'_ s an' --'en ustu-

or to est. mated mcde-, narameters :'r ac- texture c-.ass :ntoc -:-e :

"C~cod 4 scr~m-nat cr.

_-- azer ameoocd wile -:resentead for estz-*at---n; the nknown:

St ructural :azame-.ers for :ohe st-.s~ extur.e models descrl cea- lon

This method 'for estimating the model naramet.ers, li-e t.-e g-eo.

discriminat;or, -aes use of th e sratia:l gray-level- c-o-occurrence ma-r-'x

sc-.:, ~_C4 -,;n~ o o: sec oo evelczong toe csrmotr :

Zsoown togive =tra.:e ~zmlh~U~ sintso h



After describing the overall. discrimination systemn in Sec-tion 11,

a thorough descrip~tion of the maximun likelihood parameter est:.mtor

s given 4ir Section 7-:. Results of the new parameter estimation teen-

niue are given -n Section _V, while the efficacy of the log-likelihood

discriminat.or whn-cn makes use of the pazrameter estimates is given in

Section V. Sec-tion V! -rovides Fu~r a-nd concl.usi-on.

. otg-Like-'hood. Discrim-inator:

-- The b..ock diagram -which describes th-e IoE-likelinooo -extue a:.s-

criminazion syst.em -is presented -n F-E.. Zinp-ut, image data which- is to ,

-rocessed b-y either t.he -.ext:ure "~scr-;-4na-.cr or parameter estim*ati.on

st-age is f::rst. -:assed tzrough a r-re-processing Stage. The nre-process-

:gstage serves t.wo puwpcses. Firs3:, it p;rovides a degree of nrc'a-

-:'cr wh-i2h e& -nates -,nes-ra 'e ot-s such as differences -*n _Illu=-

4nati*on, differences in digiti*zation, et-c. Second-!y, it serves to re-

3uantize the data in a knou-n fashion. t-- can. be seen from 1a-nd the

next section that botn the 0 -sc r--;mmnat or and paramet.er estimatcr reculre

knowle,-ge of the scheme used in auanti zingE the data. This informati on

=ay nc-t be available in= real-world aprlications. :Even if the quantizia-

soneme were k~nown. itama, be necessar, t.c re-cuantize tz'e tata In craer

*- =a"-=-t su-:taze f':r :roce ssing b irinto:r :arameteret

mator. Anexamnle is th'e n-umzber cf gray levels. As seen. :n * ne

s-'ze -,f th-e szati: gray-leve: co-occun-rence matrix is Ze where s

hne numo-er of gray levels. Therefore, computational complexity of both- the

_;_s.-r4--natcr and estimator is proporticnal to i the square of the nunber

:f gray leve!2. For computational reasons. it. is cl'eazr that Q should be

Z za" s oszib'e. Ththe oth'er hand, a .alu-e of chosen tcoo



snac Ij. result i4z degraded performsxnce. Focr the e~erimenies sr:e

tnhis paper, a value of Q,6L was found tc mroviie satisfactor7 Perform-

a nce -with reasonatle comnutaticn. cost. in any event, i4f th'e mu"-er :.f

'r" iage gray levels iJs la-ger than Z , sone t.'e of gray level~rr

Zic i necessary.

-,,txe of nre--:rocessirnz used4 the e.xt-erim=ents desc-r4-er er

te gray levels fte ntzaas

-- .g im-age 'possesses = a. leve's anda 3 a--sS~an: share-j hft~ran

- .sar-,:e mear. of ';2 an,4 a va~. ar~ancc f

Ga.1s-'n - z - n : :;Z S im r'c-e-> ------

~~e~e--r-----

- - .-no-,:h- i-. =a ------ --- zC.fr -c

:ca:o. ecr.:-.e escribted abov-'e -,n to'-7o~u- --zE- -

--n 4--e -Izeso -

a r o :cwu' e 2-a- e. n- I I-*- - - - - -- -

-' e ycJ ne of cr a "- - an-z~g szhemes, 3-n:

~rnecua4zatior. serves - reznc-e t:'ec =d~esirable feZ.'Lr

-ant ,per-a::s,4is t-he f, .'a*, -.- e 7z-sed :textu'.e

-------------------- Of a'T'ant .. : Z-~ L e~a :~tr



properties, it is reasonable to assume that a simple discriminator based

on first-order properties alone could be used instead of the prc;ose:. log--

likelihood discriminator.

" nce a decision has been made to perfcr- :_stcgraz equaI.zato :. -at

input data, the choice cf a Gaussian output histogram is easily explained.

The stochastio texture models described in [1],which will be used as the

underlying stochastic mode.1 for the various texture classes, all possess

order Gaussian statistics. Thus, forcing the texture data tc posse: a

Gaussiar. histogram will at least insure that there is not a first-orde:z

match between tne -texture data and the model which is to be fitted by tne

t arameter es tmator.

The abc-:e 7zr-: L-sn .rar.. o :~o~

could be used. tf the input data is properly quantized, then there may

be no need to perfer - any processing ut al. in fact, for the experiments

involving synthetic textures, nc pre-processing was done other than simple

binary scaling of the input data from 256 to 6L gray levels.

After the original data is processed by the Gaussian equalization

stage, it is divided into two groups. The first group consists of the

traninE set, which consists of images containing only one texture whose

class is zncu.n. This ' oaa 4s passed to the parameter estimator which loof-

individuaLly at the texture data for each known class and attempts to

fit the assumed underlying stochastic image model to each class. The

unkncwn structural parameters are estimated for each class and used by

the discriminator to form the log-likelihood functicnals for eash text,:re

class as described in [I]. The geccnd group of data consist cf the -an-

... . se-,; those images w-hich. are 'known to contain several textures

L .,, ' , " " . ' " U . Z-_



whose classes are unknown. This group of images is passed to the dis-

criminator and processed as described in [1].

As can be seen, the discrimination system described here differs

from that in [1] in that a training set must be available which contains

known texture data from each of the possible classes, and a parameter

estimator uses the training set to estimate unknown structural parameters

for each texture class which were assumed known in the preliminary experi-

ments conducted in [1]. Also, for real-world data, the pre-processing

* described above is used to normalize the data.

III. Parameter Estimation Technique:

In this section a description of the techniques used to develop approx-

imate maximum likelihood estimates of the unknown structural Darameters

* is presented. It will be seen that development of the proposed estitor

narallels almost exactly the development of the discriminator described

; in Hl.

Recall from [1] that {f. is the input image and H k=C,,
14i,J=lk

...,K-1 represent the K possible texture classes or hypotheses.

Also, recall that F. , represen the observations contained in a w-indow

of size (2d4)x(2_M+l) centered about pixel positicn (i,. . That is,

F. = i -M<k<i?, j-M<L< +M) '=,',
1,j "' ,£ - - : " -- i-, !' .... '*%

where N is the total number of pixels along each side of the assumed square

image array. From the data contained in this window the gray-level co-occurrence

matrix was calculated for a fixed distance d for all rotation anzles q--zd "Ea-

called P (d). The log-likelihood classifier assigned the nDixe.

to the class k(i ,j )=kf

' )- "C i



L P i'j(d)} max (Li,k(d)} (2)
0  ~O<k<K-

where

pi{P I (d)IH kI'{P ~ (d)} X n ____. (d) k=O,l,...,K-l (3)
P ij

represents the class-conditional log-likelihood functional.

Now, instead of maximizing over the possible texture classes, it is

proposed that the appropriate log-likelihod functionals be maximized over

* -,% the range of unknown model values to determine approxi-mace maximum

A, likelihood estimates of unknown structural parameters. More precisely,

let {f N now represent image data from the training set which is known
_-J i,j=l

to contain homogeneous texture data from only one class H Assume that

a suitable stochastic image model has been chosen and let a represnet

the vector containing the model parameters which are unknown and have to

be estimated from the gray-level co-occurrence matrix calculated from the

data. Since the entire image is known to contain only one texture, the

co-occurrence matrix can be calculated over the entire image and denoted

P(d). Also, let A represent the set of possible values which the unknown

parame-er vector a may attain. The log-likelihood functional conditioned

on H and narameter vector a is then

L 1{ P(d);a} in p{P(d)) (4)

The approximate maximum likelihood estimate of the unknown parameter vector

is the value which maximizes the log-likelihood functional of (4). That

is, the maximum-likelihood estimator a satisfies

{P(d); = max :,{P(d)_ (5
aczA



By comparing Eqs. (4) and (5) with Eqs. (1), (2), and (3), it can

be seen that the proposed parameter estimation scheme follows the same

logic and uses many of the elements of the previously proposed discrim-

ination scheme. It is now necessary to specify a practical way of solv-

ing equation (5). The most common method is to take fi-st derivatives

and set the resulting equation to zero. That is, solve

LP(d)(6)

However, for the stochastic models which are of interest no closed form

solution to (6) has yet been found. Therefore, it has been necessary to

resort to a more direct but somewhat conutational solution tc ecuation

(5). This involves perfor=!ng a computer search over the permissible

parameter space A and taking the value P. which maximizes (5).

Since for a continuous parameter space, -he range of possible values is

uncountable, it is necessary to lay a discrete grid of points over the

parameter space and evaluate the log-likelihood functional only at those

pcints. Clearly, there is a tradeoff involved in specifying this grid.

'f the grid points are spaced toc far apart, the calculated maximum may

be far from the true maximum, res.ting in poor parameter estimates.

the other hand, spacing the grid points too close together . resui:

in an unnecessary computational burden.

It should be noted that more sophisticated search techniques -har

the one described above could be used to reduce the computational burden,

but were not used due to their increased ;rogrnang complexity.



At this point it is necessary to specify the uxderlying stochastic

model to be used in the experiments described in the following experiments.

The model chosen is the rectangular partition process described in [1].

From [1], it can be seen that

Lk{P(d);a_) = 0 p(m,n;d) zk(m,n;d,a) (7)
m=-O n=O

where

z k(m'n;d 'a) = 'n Qm,n(d;Hk', ()

Recall that Q m,n(d;H ka) is the probability of observing gray-levels

m and n at a particular pair of points separated by a distance d condition-

ed on terture class Hk and parameter vector a. Also, recall from [13

that

,(d;Ha) = pk{fl,f ;a,dLL) (9)

m n

where E, £=0,,... ,Q-I represent the quantization levels and AL

the spatial sampling interval.

For the rectangular partition process, the second-order p.d.f.

Pk ;,a,dL}in (9 can be evaluated from corresponding results in [1].

P,,f 2;x5+ = hf )p , l2- 2- - 2

where

hb4 2 = 1 I- f 2+ f 2hZ112 2a 2 /1-0=2 exp - a(~pk ; >0

1 1' 2C 6

f2 
I(1= -- exp -- '>(fa-f2) ; L-=o

7-r notational convenience we have suppressed the conditioning on H.
S (10) although this cc..Itioning is clearly implicit.



and

pn CosrL e exp{-V'_ Al Ll !cose)de (2

it can be seen that the rectangular process is completely defined in terms

-f the oarameters o, X, and c2 representing the correlation coefficient,

edge density, and variance of The random field, resnectively. rae tC

te zre-orocessing stage, the varianuce c2 be known, and thus the

" n'-now parameter vector a consists of the parwmeters A and o. T-,

s Thus the search must be performed over a two dimensional

gr:d sf pcinzs. :n the most general case, c and X must obey -I<o<z and X>.
4,

-.- actice, a priori knowledge of the textures of interest can be used

- -:- the search area to a much more manageable region.

Farpmeter Estimation Results

r. order to establish the efficacy of the proposed parameter esti-

mation technique, a two-dimensional search was first applied to syt-thet-

icai z generated realizations of the rectangular rrocess to develop esti-

mates of the parameters c and X. The realizations used are sho-n

-ig. -. Each of the images possesses 256 .ixels tc a sioe, haZ a

=ea= and variance of 32 and 156.25, respectively, and is cuantizei t

6' gay levels. 'The grid which was used to generate the estimates cover-

ed a range of p from -0.1 to 0.8 and a range of \ from 0.! to 0.-. The

spacing between r values was 0.1 and the spacing between value-



"as 0.025. The grid region was chosen to encompass the actual parameter

values for all the realizations so that the maximum values would be ex-

pected to fall within the search regions and not on a boundary. A compar-

ison of the actual and estimated parameter values for each realization

for various distances is presented in Table 1. It can be seen that the

parameter estimates are quite good in all cases. Due to the grid spac-

ings, it is difficult to determine which values of d provides the best

result. The question of which value of d is best in general application of

the parameter estimatcr and discriminator vll be presented in Section VI.

It is of some interest to see how the value of the log-likelihood

functional cf (7) varies over the search grid. Three-dimensional plots

of the resulting likelihood surfaces for the cases considered are illustrated

in Fig. 's 4-!2. The labeled axes represent the values of c and X over which the

search was performed while the remaining axis represents the value of

,he log-likelihood functional for the corresponding values of p and A.

7t can be seen that the surfaces are generally quite smooth with no

sharp peaks at the maximum.

After demonstrating that the estimator wcrks for the synthetic image, it now

is of interest to apply the parameter estimator to real-world imagery

as a first step in a total tenure discriirnation approach. The test

images used consist of selected samples of Brodatz textures [4i. Typical

samples of grass, raffia, and herringbone are illustrated in Fig. l.

These images consist of 256x256 pixels and have been processed by the Gauss-

ian equalization stage described in Section II to possess 64 gray-levels, a

mean of 32, and a variance of 156.25. The parameter estimation scheme was

a:tuaiiy at: _ -led to three such samtles of texture to give the parameter

L1



estimates presented in Table 2. For each of the estimates, the search

region was chosen empirically so that the maximum occurred in the inter-

ior of the region. For the case d=l all of the X estimates are greater

than unity, and as d gets larger, the estimated values of X decrease.

The high values of estimated edge density and the fact that these esti-

mates vary greatly for different values of d is somewhat discomforting.

If the assumed rectangular partition process provided an accurate model

for the Brodatz textures, values of X less than unity which remain relatively

constant for different values of d would be expected. That this does not

occur can be explained by comparing the properties of the rectangular

partition process to the properties of real-world textures. Realiza-

tions of the rectangular partition process are composed of regions of constan-

gray level while most real-world ee.xtures are composed of regions of

nearly constant gray level. As mentioned in [1], the above properties

of the rectangular process results in a large discrete probability mass

along the main diagonal of the gray-level co-occurrence matrix while for real-

world textures this probability mass will be distributed over the diagon-

als close to the main diagonal. The high values of estimated edge densitY

which result and the fact that they decrease as d gets larger are direc.

result of this mismatch between the model and ac-ual data. Enhancements

to the rectangular process model such as the addition of a white noise

field, might eliminate this problem. In the meantime, however, some ccnscl.a-ion

can be taken from the fact that the estimated parameter values for the

three textures are significantly different, which leads to the hope that

even though the modeling assumptions are somewhat inaccurate, overall dt--crim-

inatcr -erfor=---ce still be good. This issue will -e

t*e next section.



V. Discriminator Results:

Making use of the parameter estimates described in the previous sec-

tion, several discrimination experiments were performed. The 2-D digital

filtering implementation approach described in [1] was used as was the

Wiener filtering approach to filter design. The specifications and

resulting parameters for the designed filters are provided in Table 3.

Note the coefficient A described in [i1 is not included since it is an

overall gain factor, and was taken equal to unity, which will not affect

the results. Comparison of the desired and actual frequency responses for

* the designed filters is provided in Fig.'s 14-16.

The first experiment performed involved processing the same synthet-

ic test image as used in [1]. Recall this test image is composed of three

distinct realizations of the rectangular process possessing different

parameters, as shown in Fig.'s 17-19.

Since the parameter estimates are quite close to the actual values,

and the filters used are the same as those used in [1], it is not surprising

that the results, shown in Figs. 17-19, are similar to those in [1]. The case d=l

appears to provide the best results, particularly for the weak and moder-

ate filtering cases. This result tends to disagree with the statement

in [11 that a distance equal to the reciprocal of the average edge density

of the textures being processed is the optium distance for texture dis-

crimination. More will be said about about this question later.

To test the discriminator on real-world data, the original test image

in Fig. 20a was created which contains samples of the three Brodatz texture

used in Section I:. The upper-left or NW side of the image contains raffia

tex-are data, the right or I side of the image contains grass, and the

12



bottom or S portion of the image consists of herringbone.

The results of the discriminator using the parameter estimates of

Table 2 and the filters specified in Table 3 are presented in Fig.'s

20-22. As was the case for the synthetic test image, a distance of

d=l produced the best results. For this distance, the strong filter

'rovides excellent results comparable to the s".m-thetic test oase, while

the results fcr the weak and moderate fi-ters are clearly infericr. This

tends to indicate that for The real-world test case, more smoothing is

required by the filter to remove inccrrect>, dscri:mnated areas caused

by irregular areas in each texture.

V. Summary and Conclusions

A method for esttmatin the strucural reters cf a smecif c sto-

chastic texture model has been ;roosed for use w-:th the texture discrim-

ination scheme described in .- his zarpneter estimation scheme has

been shown to provide good resu'l-s when used on realizations of the rec-

tangular partition process for various choices of model parameters. 'when

arplied to selected samples of the Brodatz [ ; textures, the parameter

estimation scheme gives values which indicate that the rectang-:.ar part-

.-ir process is not an ideal mode- for real-wcrld textures. :o-e'.er.

results of using the ter-ure oscrmnator on samples containing Brodaz_

ext-ures are quite good, indicating that the prcposed texture d_scruin-

ation technique can be effective on real-world texture. Several extens.ions

to the procedure are suggested which might improve performance.

For example, results indicate that the rectangular partition process

is not an ideal model for real-world textures because it possesses regicns

-, - -



of constant gray level while real world textures usually possess regions

of nearly constant gray level. A logical step would be to consider add-

ing a white noise component to the rectangular partition process, and

redevelop the expressions for second-order p.d.f.'s which are

used in the discriminator and parameter estimator.

Another possible solution to this modeling mismatch might be to in-

cdude in the pre-processing stage a step which isolates regions uf nearly

constant gray level and alters the intensity of each pixel within each

region "o a suitable constat gray level. Hopefully, this step would

allow the processed images to retain their textural properties while

providing for a closer match between texture and model, resulting 'n

improved discri-inationr results.

.ne modification to the text-ure discrimination system which is proposed

is the elimination of the Wiener filtering approach to the 2-D digital

filtering implementation. It seems obvious from looking at the frequen-

cy responses that the Wiener filters can be replaced by simple lowpass

filters parametized by cutoff frequency. Although this change would

not reduce discriminator computational complexity, it would simplify

filter design and make it easier -to relate discriminator performance

to the choice of filzer rar-meters.

One of the questions which must be answered is which value of dis-

tance d between pixels is the best to use in the proposed texture discrim-

inator and parameter estimator. Since the desired objective is to maxi-

mize discriminator performance, it seems obvious that the best distance

is the value of d which provides maximum separation of the parameter



estimates for each of the texture classes being considered. The results

-for the Brodatz test image shov this to be true. Despite the fact that the

model used provides an inaccurate fit to the textures,the fact that the para-

meter estimates are significantly different for all three texture class-

es for the case d=: results in good discriminator performance.

In any event, it is believed that -he prcposed texture discr:zin-

:n he us* tc -rtvie .'fective .erfcr=za:ce in a variey cf rea--wcrc'

ur_e iscrlinat'-_'-r ob~ec -:-1-er esrk is being :ice tc

'oe. discrirlna~or Terforman, &:i es atlis -he efficac:. ,_ :. o hfi

tpprcach as applied t- the: ae&. :'- -- a.. r, zbe-s.

, '~Refer- -r-i es

-. : . :c , I A. r:ez., and A . '.-Jckers, "Tex"ure - s-_
4, '.-.- . , -+."_ o: .. = - ei i ,-h .sLr Tex":,.re Vo(,.e-" , s=,'- -t-,ea

-- :- "r"z.. •n Fattern . and Vac-r_'.., :-:elligence.

- V -~2.~.--a.:-: I. :ost-' ", Fetr eat'-Ires
for :mage Classificati=n., =7 Trans. Syst., Mar., and Cybern., vol.

pp. 610-621, ;-c. 97A.

K . , ig:. .a l-mane ,rscessing ,Wiley - ntersciencc,

"'v Y~rk , 9 Char 2.
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0.21

Log-Likelihood Surface fmr 7ect'ag'Jar Partition Process;

c. . ~. N

0.1J



Figuire 6

Log-.ike-ihood Surface for Bectarngular Partiti.on Pr-ocess;

1 7,

L:eI-.cz Surf -ce ff- P' a c ro ce ss;



-0.

Log-Likeli'hood Surface ?eg~2rPartition Process;

1.0
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Log-Uelihoo( S--rf,.ce fc-.,' ?ec arig'u1ar Partition Process;

~'--c. e1s:



46

Log-Likelihood Surface for Renazngular Pazrtitior Process;

X=.33, r=0.5, d=3.



a.) Grass Sample 1 b.) Grass Sample 2 c.) Grass Sample 3

Awi

d.) Raffia Sample 1 e.) Raffia Sample 2 f.) Raffia Sample 3

g.) Herringbone h.) Herringbone i.) Herringbone
Sample 1 Sample 2 Sample 3

Fig-are 13

Selected Samples of Brodatz Textures
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a.) Desib. es;;on e b.) Actual Response
for Filter 1 for Filter 1

t

c.) Desired Response d.) Actual Response
for Filter 2 for Filter 2

*o ) .... " R. dr?:ponrc;: f° ) Arr-ual Resy: rute

fozr FilLer 3 for Filter 3

Figure iL

i.'req.47cy 1,:jun :es of Desired a : Actual Fi r ,rr

27
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a.) Desired Response b.) Actual Response
for Filter for Filter ~

c. )Desired Rem--,orse d.) Actual Response

for Filter 5for Filter 5

Figure 1c,

Frequency Responses of Desired and Actual Filters for d=2
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a.) 7esicI esvonse ) 4ctual Rsponse
fur Flet 7 for Filter

C.) sired Response d. Ac' ,al Response

for Filter B :or Fil!er 8

p.,
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a.) Original; NW, p=0.0, b.) Weak Interference
X=0.16; NE, p=0.5,
X=0.33; S, p=O.O,

X=O. 33

c.) Moderate Interference d.) Strong Interference

Figure 17

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with d=l

1 0



N=.) I W,!ak =ntr:3rr

AC.

r Moderate nrteri'; -once a. ') t r,-,r. ,r

TPiguxe 18

1Tcrformance n'f Log-Likelihood Discrdfr,atcor

Using Parameter Estima~tes d--



3
a. Origina7_ M4, =0.0 Y.",k interference

A~O~6~.~ EP=O.5,

4 AC,. 33

'II

c. ..M, erate interference d. 3"torong Interference

? igure 19

Performa,>: of Log-Likelihood Disc-riminator

i ng Pairom ,ter Estimates
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a.) Origi.I; NTW, Raf ia; b.) Filter 1
E, Gnr;s; 7, Herring- Weak Interference

c.) Filter 2 d.) Fjiter 3
Moderate Tnterl'(rence S~rong Interference

Figure

P.I'urmanec of Log-Likelihood Discrimin-tor

U~n FParameter Estimates with u~,

413
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a.) Original; NW, Raffia; b.) Filter 4

E, Grass; S, Herring- Weak Interference

bone

.

c.) Filter 5 d,) Filter 6
Moderate Interference Strong Interference

Figure 21

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with d=2
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a.) OriJm f; LW, .fia; b.) Filter 7
E, s . i -Weak Interference

2.) Filter 8 d.) Filter 9

Moderate Interference Strong Interfcrence

Figure 22

Performance of Log-Likelihood Discriminator

Using Parameter Estimates with a=
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M ISSTION
* Of

Rawm Air Development Center
WAC pfans and executea 'teeaitch, devetopment, test and

s~e~feted acquisition pLogtams in suppot'.t o6 Command, Con4'tot
Commntcatio". and fInteiC~qence (C-37) activtez. Technicat
and eiqqinee't.nq .6uppot~t within aea o -techicat competence
Z5 pliovided to ESP) Pkog'tam 0'icl (POs) and othet ESV
d eeme nt4. The pirinciLpaC -technicae m-L5,sion aAea6 ate
commLun-catonz5, e>ectomagnetc gui4dance aMi contt, 6tui-
ve, eUaice oK4 qtound and aec'wopace objects, - ntefIigence data
coteectpon and handting, in',okmation stfstem technoec'9q,
iono,6phe'ic pkopaqatc'n, 6oeid stte science's, mickomve
phq~ic. and etecttonic te~abitityt, mantinabiI~ty antd
c oipatibitty.




